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Are you certain?

“Doubt is not a pleasant condition, but certainty is absurd.”
–Voltaire
French author, humanist, rationalist, & satirist (1694 - 1778)

“It is in the admission of ignorance and the admission of uncertainty that
there is a hope for the continuous motion of human beings in some
direction that doesn’t get confined, permanently blocked, as it has so many
times before in various periods in the history of man.”
–Richard P. Feynman

Models are not perfect
Observations are not perfect
Data assimilation combines these sources of imperfect information to
provide better information.
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What is Data Assimilation?

Data assimilation are methods
that combine information from a
model, observational data, and
corresponding error statistics, to
provide an estimate of the true
state of a system as accurately as
possible.
These methodologies are used in
a wide range of problems, such
as:

Weather prediction
Hurricane simulation and
forecasting
Radiation belt simulation
Solar Physics
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Data Assimilation Cycle
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Type of Data Assimilation methods
co
st

complexity
b
insertion

b
KF

b
EnKF

b
3D-Var

b
EnKS

b
EKF

b
4D-Var

b
PF

Sequential Methods:
Kalman filter (KF)
extended Kalman filter (EKF)
ensemble Kalman filter (EnKF)
ensemble Kalman smoother
(EnKS)
Particle filter (PF)

Variational Methods:
three dimensional variational
method (3D-Var)
four dimensional variational
method (4D-Var)

Hybrids:
evolving covariance matrix in
3D-Var or 4D-Var, via ensemble
approximation
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Approaches to Data Assimilation
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Approaches:
Discontinuous: assimilation individually when observations are
available to compute analysis (3D-Var, Ensemble Kalman Filter).
Continuous: assimilation considers all observations in a given time
window to compute analysis. These methods are usually called
smoothers (4D-Var, Ensemble Kalman Smoother).
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Variational Methods

The principle of variational meth-
ods is to approximate the solution
(analysis) by minimizing a cost
functional J .
The solution of this minimization
problem is performed iteratively
with a Newton type technique
(steepest decent). The analysis is
the minimum of the cost function

xa = argmin
x∈Rn

J (x)
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Three- and Four-Dimensional Variational Methods
(3D-Var, 4D-Var)

3D-Var
At each time-instance where observations are available, the cost function is
minimized

J (x) =
(
x− xf )T (Pf )−1 (x− xf )+ (yo −Hx)

T R−1 (yo −Hx)

where its gradient is given by

∇J (x) = 2
(
Pf )−1 (x− xf )− 2HR−1 (yo −Hx)

4D-Var
4D-Var is a generalization of 3D-Var for observations that are distributed in
time (smoother). The cost function then becomes

J (x) =
(
x− xf )T (Pf )−1 (x− xf )+

T∑

k=1

(yo
k −Hkxk)

T R−1
k (yo

k −Hkxk)

Tangent and Adjoint are needed for both methods!!
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Kalman Filter

The Kalman filter (KF) was devel-
oped by Rudolf Kalman (1960) for
assimilation of linear models. The
key assumptions are:

Model is linear in time
Both the model and the
observations have a
Gaussian probability
distribution

Resulting analysis is estimate of
true state of the system with as-
sociated uncertainty (variance).

Let xf ∈ Rn, M ∈ Rn×n

xf
i = Mxf

i−1 + ηi

The Kalman filter analysis equations
are given by

xa = xf + K
(
yo −Hxf ) (1)

where K is the Kalman Gain Matrix,
defined as

K = Pf HT (HPf HT + R
)−1

(2)

The analysis error covariance matrix
is given as

Pa = (I−KH) Pf (3)
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Kalman Filter Data Assimilation Cycle

Initial Condition
xa (0), Pa (0)

Forecast
xf = Mti→ti+1

(xa)

Pf = Mti→ti+1
PaMT

ti→ti+1
+Qm

Observations
yo

Assimilation
xa = xf +K

[
yo − Hxf

]

Pa = [I − KH]Pf

where

K = PfHT
[
HPfHT − R

]−1

Prediction
xf = Mti→ti+1

(xa)

Pf = Mti→ti+1
PaMT

ti→ti+1
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Ensemble Kalman Filter (EnKF)

The Ensemble Kalman Filter (EnKF) was first introduced by Evensen
(1994) as a Monte Carlo approximation to Kalman filtering and has gained
wide acceptance in data assimilation applications

EnKF is a sequential data assimilation method that uses an ensemble
of model forecast to approximate the model mean and covariance
matrix
The ensemble is updated with every analysis to reflect information
provided by the observations, and is evolved using the forecast model
between analysis.
By providing a flow-dependent estimate of the model error covariance,
the EnKF can optimally adjust the model forecast to newly available
observations.
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EnKF formulation

LetMtk→tk+1 be the forecast model,

x (tk+1) =Mtk→tk+1 (x (tk)) (4)

For an vector of observations yo ∈ Rm and an ensemble of N forecast
xf

i ∈ Rn, i = 1, . . . ,N the EnKF analysis equation are given by:

xa
i = xf

i + K
(

yo
i −Hxf

i

)
, i = 1, . . . ,N (5)

K = Pf HT (HPf HT + R
)−1

. (6)

In the EnKF the forecast error covariance matrix is obtained through the
ensemble of model forecast, using the relation

Pf =
1

N − 1

N∑

i=1

(
xf

i − xf
)(

xf
i − xf

)T
, (7)

where xf is the forecast ensemble average
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Lorenz 96 Model Assimilation Example

The Lorenz 96 40-variable model is a toy atmospheric model which
contains chaotic behavior commonly present in many atmospheric models.
The Lorenz model equations are

dXi

dt
= (Xi+1 − Xi−2) Xi−1 − Xi + F

where the variables Xi, i = 1 . . . n are defined in a cyclic chain such that
Xn−k = Xn+k = Xk, and F is a specified forcing term. The system is chaotic
for large values of F.

discretized in time with a 4th order Runge-Kutta method,
time step of ∆t = 0.005 or 6 hours,
for all experiment F = 8.0, and n = 40
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Data Assimilation Setup

Assimilation twin-experiment, where observations are obtained from a
“truth” or reference run and assimilated into a control run,
initial condition of reference run obtained by integrating the model with
360 time-steps using Xi = 0.0 for i = 2, . . . , n and X1 = 0.001
initial condition for control run obtained by perturbing the reference with
N (0, 1),
ensemble generated by perturbing control initial condition with N (0, 1)

ensemble integrated up to 40 time-steps, with single assimilation cycle
at time-step 40 and verification at time-step 80
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Assimilation Results with 40 members
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Assimilation Results (Cont.)
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Data Assimilation for Fracture Model

The Hybrid Optimization Software Suite (HOSS) is a multi-physics
software package, that was developed based on the combined
finite-discrete element method (FDEM)
HOSS amalgamates the finite element based analysis of continuum
media with discrete element based transient dynamics, contact
detection, and contact interaction solutions

Parameters of Interest:
a, b, c (softening curve), tensile strength (σmax

n ), shear strength (σmax
t ),

specific energy in Mode I (normal, En), specific energy in Mode II
(tangential, Et)
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Split Hopkinson Pressure Bar (SHPB)

In the SHPB experiment, a
prepared test sample is
placed between two bars
Pressure pulse is generated
on the left end of the incident
bar by the action of a striker
bar
Pressure pulse is shaped by
placing a small piece of
metal on the left free end of
incidence bar
Striker travels at certain
velocity and hits the incident
bar
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Assimilation Results
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Assimilation Results (Cont.)
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Assimilation Results (Cont.)
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Data Assimilation for a Global
Ionosphere-Thermosphere Model

Space debris poses a danger
to satellite infrastructure, need
accurate orbit prediction
Key element is specification
of ionosphere-thermosphere
environment
Physics-based models posses
the potential to provide an
accurate prediction

Global
Ionosphere-Thermosphere
Model (GITM)
TIEGCM

Data assimilation is a tool to
calibrate and correct the
density model output by
using observational data
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The Global Inosphere-Thermosphere Model (GITM)
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GITM: physics based model
that solves the full
Navier-Stokes equations for
density, velocity, and
temperature for a number of
neutral and charged
components
explicit solves for the neutral
densities of O, O2, N
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main drives is solar UV
radiation (measured by F10.7
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CHAMP and GRACE
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CHAMP and GRACE provide neutral density derived observations
use CHAMP observations for assimilation with LETKF

H.C. Godinez (T-5) Data Assimilation 06/13/2019 25 / 34



Data Assimilation CHAMP
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observation taken from CHAMP
for Oct 21 2002 to Oct 31 2002
assimilation done with 10
ensemble member, using
LETKF
observations assimilated every
30 minutes
local region set to 200 km
“calibrated” F10.7 parameter
ensemble generated with mean
F10.7 = 165.89 and standard
deviation of 10.0

H.C. Godinez (T-5) Data Assimilation 06/13/2019 26 / 34



Assimilation during Solar Maximum

Assimilation performed for October 21–24, 2002, during solar max
GITM provides an accurate estimate for the ionosphere-thermosphere
assimilated F10.7 oscillating closely to measured F10.7, not much
correction is needed for GITM match observed density from CHAMP
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Assimilation during Solar Minimum

Assimilation performed for August 28–31, 2009, during solar minimum.
During solar minimum, more complex internal processes dominate
ionosphere-thermosphere, GITM unable to provide accurate
representation
Assimilation provides significant changes to F10.7, GITM seems to get
closer to observed density from CHAMP
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Print Close

Earth’s Magnetosphere

The inner magnetosphere is composed of three populations of charged particles that are trapped in the Earth’s magnetic
field. These particles move in circular motions—or gyrate—around the field lines but rarely interact with each other.

Ring Current: The ring current is a population of medium-energy particles that drift around the Earth, with protons drifting in
one direction and electrons drifting in the opposite direction.

Plasmasphere: The plasmasphere is composed of low-energy particles that drift up from the ionosphere, forming a
sphere-like reservoir of very cold, fairly dense plasma that co-rotates with the Earth.

Van Allen Radiation Belts: The Van Allen Belts consist of high-energy particles that are trapped in two regions. These
particles move along the field lines toward the poles until they are reflected back, creating a bouncing movement. Particles
with a high enough velocity along the magnetic field will follow the field lines to the poles and enter the upper atmosphere.

Ring Current Data: A Coronal Mass Ejection (CME) occurs when magnetic forces overcome pressure and gravity in the
solar corona. This lifts a huge mass of solar plasma from the corona and creates a shock wave that accelerates some of the

NASA - Earth’s Magnetosphere http://www.nasa.gov/mission_pages/sunearth/multimedia/inner...

1 of 2 7/9/15, 9:42 AM
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Ring Current Pressure Estimation with RAM-SCB
using Data Assimilation

Capturing plasma injections on the inner magnetosphere is important
for understanding formation/evolution of the ring current.
Use Data Assimilation to estimate the ring current using the Ring
Current-Atmosphere Interactions Model with Self-Consistent Magnetic
field (RAM-SCB)
Use flux data from the Van Allen Probes.

RAM-SCB Model
physics-based model used to simulate ring current dynamics
The RAM-SCB computes particle phase space distributions for ions
and electrons on the equator inside the geosynchronous orbit for
different pitch angles and energies in prescribed electric and magnetic
fields

Assimilation Setup
20 ensemble simulations are used, generated by perturbing initial flux
in RAM-SCB and running the model forward
Assimilate proton flux data from the Van Allen B probe, validate with
Van Allen A probe
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Summary

Wide range of assimilation methodologies, most are easy to implement
and effective.
Data assimilation is an active area of research (both in theory and
applications).
Assimilation in space physics used for gap filling, forecast, nowcast
and/or reanalysis, reduction and specification of uncertainties
Data assimilation offers paradigm shift from previous working relation
between modelers and experimentalist, work more closely together.

Challenges ahead
Incomplete physics→ models error
Uncertainties in observation operator
Sparse observational field
Non-Gaussian distributions for models and observations
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